Making a Robot Dance to Music Using Chaotic Itinerancy in a Network of FitzHugh-Nagumo Neurons
نویسندگان
چکیده
We propose a technique to make a robot execute free and solitary dance movements on music, in a manner which simulates the dynamic alternations between synchronisation and autonomy typically observed in human behaviour. In contrast with previous approaches, we preprogram neither the dance patterns nor their alternation, but rather build in basic dynamics in the robot, and let the behaviour emerge in a seemingly autonomous manner. The robot motor commands are generated in real-time by converting the output of a neural network processing a sequence of pulses corresponding to the beats of the music being danced to. The spiking behaviour of individual neurons is controlled by a biologically-inspired model (FitzHugh-Nagumo). Under appropriate parameters, the network generates chaotic itinerant behaviour among low-dimensional local attractors. A robot controlled this way exhibits a variety of motion styles, some being periodic and strongly coupled to the musical rhythm and others being more independent, as well as spontaneous jumps from one style of motion to the next. The resulting behaviour is completely deterministic (as the solution of a non-linear dynamical system), adaptive to the music being played, and believed to be an interesting compromise between synchronisation and autonomy.
منابع مشابه
Simulating Active Perception and Mental Imagery with Embodied Chaotic Itinerancy
We explore the understanding of conscious states in terms of spatio-temporal dynamics through modelling a mobile agent. Conscious states are associated with an agent’s spontaneous and deterministic fluctuation between attachment to and detachment from the surroundings. It is because of this fluctuating nature, we argue, that an agent can perceive structure in the world. Perception requires a co...
متن کاملIdentifying Chaotic FitzHugh-Nagumo Neurons Using Compressive Sensing
We develop a completely data-driven approach to reconstructing coupled neuronal networks that contain a small subset of chaotic neurons. Such chaotic elements can be the result of parameter shift in their individual dynamical systems and may lead to abnormal functions of the network. To accurately identify the chaotic neurons may thus be necessary and important, for example, applying appropriat...
متن کاملSynchronization of multiple chaotic FitzHugh-Nagumo neurons with gap junctions under external electrical stimulation
This paper discusses the synchronization of three coupled chaotic FitzHugh–Nagumo (FHN) neurons with different gap junctions under external electrical stimulation. A nonlinear control law that guarantees the asymptotic synchronization of coupled neurons (with reduced computations) is proposed. The developed control law incorporates the synchronization error between two slave the slave neurons, ...
متن کاملAdaptive Fractional-order Control for Synchronization of Two Coupled Neurons in the External Electrical Stimulation
This paper addresses synchronizing two coupled chaotic FitzHugh–Nagumo (FHN) neurons with weakly gap junction under external electrical stimulation (EES). To transmit information among coupled neurons, by generalization of the integer-order FHN equations of the coupled system into the fractional-order in frequency domain using Crone approach, the behavior of each coupled neuron relies on its pa...
متن کاملAn improved pseudospectral approximation of generalized Burger-Huxley and Fitzhugh-Nagumo equations
In this research paper, an improved Chebyshev-Gauss-Lobatto pseudospectral approximation of nonlinear Burger-Huxley and Fitzhugh- Nagumo equations have been presented. The method employs chebyshev Gauss-Labatto points in time and space to obtain spectral accuracy. The mapping has introduced and transformed the initial-boundary value non-homogeneous problem to homogeneous problem. The main probl...
متن کامل